Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Monit Assess ; 194(6): 416, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1826650

ABSTRACT

The use of imidacloprid and, to a lesser degree, other neonicotinoid insecticides is widespread in FL (and globally). The moderate to high water solubility and environmental persistence of neonicotinoids allows these compounds to readily enter, and be retained in, water resources where they may harm nontarget organisms and impact biological communities and associated trophic structures negatively. To better understand imidacloprid's chronic long-term exposure potential to aquatic invertebrate communities in FL, grab water samples were collected monthly in 2015 at 77 monitoring stations statewide. Fifty-eight stations (75%), representing 24 of the 25 drainage basins sampled, had detectable concentrations of imidacloprid, with concentrations ranging from 2 to 660 nanograms per liter [ng/L]. Imidacloprid basin medians were found to be correlated with two of six land use categories (urban, transportation, agriculture, and three crop classes) examined; urban (rho = 0.43, p-value = 0.03), and orchards and vineyards (rho 0.49, p-value = 0.01). The resampling of 12 select stations, representing eight basins, between August 2019 and July 2020, for the neonicotinoids acetamiprid, clothianidin, dinotefuran, imidacloprid, and thiamethoxam, showed that (1) median values of imidacloprid continued to exceed the US EPA chronic freshwater Invertebrate Aquatic Life Benchmark (IALB) (10 ng/L), (2) imidacloprid concentration was directly correlated with flow measurements, and (3) while median imidacloprid concentration decreased between the two sampling events (48.5 vs. 34.5 ng/L, p-value = 0.01) differences in event 1 and 2 streamflow regimes and disruptions due to the COVID-19 pandemic likely affected this outcome. Clothianidin was the only other neonicotinoid found to have values greater than a US EPA IALB, with detections at three stations exceeding the chronic IALB (50 ng/L). This study highlights the challenges associated with limiting neonicotinoids from entering water resources and identifies means to reduce their entry into and persistence within FL water resources.


Subject(s)
COVID-19 , Insecticides , Water Pollutants, Chemical , Animals , Environmental Monitoring , Florida , Humans , Insecticides/analysis , Invertebrates , Neonicotinoids/analysis , Nitro Compounds , Pandemics , Water
SELECTION OF CITATIONS
SEARCH DETAIL